REPORT DOCUMENTATION PAGE oo eree?

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources gathering and maintaining the data needed, and reviewing the collection of information. Send comments regading this burden, to Washington Headquarters
Service, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Information and
Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.

1.AGENCYUSE (Leave 2. REPORT 3. REPORT TYPE AND DATES

4. TITLE AND: UNISYS Corporation 5. FUNDING
Compiler: IntergrAda for Windows NT, Versnon@
HosV/Target: Intel Deskside Server with Intel 60 MHz Pentium cpu (under

Microsoft Windows NT Server, Version 3.5) B TE C

6. Authors: The National Institute of Standards and Technology Bl A E LE@TE oy
N DEC 152,194

7. PERFORMING ORGANIZATION NAME (S) AND: 8. PERFORMING
Computer Systems Laboratory (CSL) ORGANIZATION
National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, MD 20899

9. SPONSORING/MONITORING AGENCY NAME(S) AND: 10. SPONSORING/MONITORING
Ada Joint Program Office, Defense Information Systems Agency AGENCY

Code TXEA, 701 S. Courthouse Rd.
Arlington, VA 22204-2199

11. SUPPLEMENTARY

12a. DISTRIBUTION/AVAILABILITY: Approved for Public Release; distribution | 12b. DRISTRIBUTION
unlimited

13. (Maximum 200:
VCL#: 940902S51.11376, AVF#: 94uni501_1

14. SUBJECT: Ada Programming Language, Ada Compiler Validation Summary 15. NUMBER OF
Report, Ada Compiler Validation Capability Validation Testing, Ada Validation Office,

Ada Validation Facility, ANSI/MIL-STD-1815A, AJPO 16. PRICE

17 SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION CLASSIFICATION

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN

wrennOTED 5

ﬁjig QTJ[\L}JT'IY TECE

AVF Control Number: NIST94UNI501_1 1.11
DATE COMPLETED

BEFORE ON-SITE: 94-08-31

AFTER ON-SITE: 94-09-06

REVISIONS: 94-09-14

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 940902S1.11376
UNISYS Corporation
IntegrAda for Windows NT, Version 1.0
Intel Deskside Server with Intel Pentium 60 MHz =>
Intel Deskside Server with Intel Pentium 60 MHz

Prepared By:
Software Standards Validation Group
Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

19941202 190

AVF Control Number: NIST94UNI501_1_1.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 2, 1994.

Compiler Name and Version: IntegrAda for Windows NT, Version 1.0

Host Computer System: Intel Deskside Server with Intel Pentium
60 MHz under Microsoft Windows NT Server,

Version 3.5

Target Computer System: Intel Deskside Server with Intel Pentium
60 MHz under Microsoft Windows NT Server,

Version 3.5

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
940902S1.11376 is awarded to UNISYS Corporation. Thic certificate
expires 2 years after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

/- / / ’ ”
./7 ! T e /!
s z '\“D/ T L ///L»«:// 744
Ada Valldatlon Facility Ada Validation FacilXi¥y
Dr. David K. Jefferson Mr. L. Arnold Joh?éiﬂy
Chief, Information Systems Manager, Software andards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CSL)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A.
ipn-Organization Ada Joint gram Office ————
Directfor, {Cgmputer & Software Donald J. Reifer
Engiheering Division Director, Ada Joint Program Office
Institute for Defense Analyses Defense Information Systems Agency,
Alexandria VA 22311 Center for Information Management

Washington DC 20301
U.S.A.

NIST94UNI501_ 1 1.11
DECLARATION OF CONFORMANCE
The following declaratiqn of conformance was supplied by the customer.
Customer: UNISYS Corporation

Certificate Awardee: UNISYS Corporation

Ada Validation Facility: National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

ACVC Version: 1.11

Ada Implementation:
Compiler Name and Version: IntegrAda for Windows NT, Version 1.0

Host Computer System: Intel Deskside Server with Intel Pentium
60 MHz under Microsoft Windows NT Server,

Version 3.5

Target Computer System: Intel Deskside Server with Intel Pentium
60 MHz under Microsoft Windows NT Server,

Version 3.5

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A 1ISO
8652-1987 in the implementation listed above.

—zzzgz;« /4% 4%144q,. 7/4%/}9

Customer Signature Date
Company UNISYS Corporation Accessi '
Title _Manager, Contracts and Pricing otop Yor ’
ETIS GCRA&I &
/ Vs T /7 [eq DTIC TAB |
Cértificate Awardee Signature Date Unannounced U
Company UNISYS Corporation Justiflcation .
Title Manager, Contracts and Pricing
~ By
. Distribuiicnf
Availability Cudns
Avall epdfur
Dist nrelisd
Ft/\ i

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT........... 1-1
1.2 REFERENCES........ ceeoee e e e s aeteneesannann ceesol=2
1.3 ACVC TEST CLASSES..:vtreereeennnnnnnnnnnn.. ceeeel=-2
1.4 DEFINITION OF TERMS..... e et e e ettt 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS...veeveeun... D I I T T 2-1
2.2 INAPPLICABLE TESTS..e.veeueeenn.. sereenn cececees2-]
2.3 TEST MODTIFICATIONS .t vttt teeenennnnnennnnnnnnnn. .2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT. ... uviuunnenennnnnnnnnnnnnn. 3-1
3.2 SUMMARY OF TEST RESULTS........... ce st ecesona eee3~-1
3.3 TEST EXECUTION........u.... B 3-2

APPENDIX A MACRO PARAMETERS
APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systenms,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road

Springfield, Virginia 22161

U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this wvalidation or
to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria, Virginia 22311-1772

U.S.A.

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming ILangquage,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
’ Program Office, August 1992.

[UG89] Ada Compiler Validation Capability User’s Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
~ test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation 1listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

A list of the values used for this implementation
is provided in Appendix A. 1In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

largest integer.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG891}).

In order to pass an ACVC an Ada implementation must process each

test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability (ACVC)

Ada Implementation

Ada Joint Program
Office (AJPO)

Ada Validation
Facility (AVF)

Ada Validation
Organization (AVO)

Compliance of an
Ada Implementation

The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs 1into executable form and
execution thereof.

The means for testing compliance of Ada

implementations, Validation consisting of
the test suite, the support programs, the
ACVC Capability VUser’s Guide and the

template for the validation summary (ACVC)
report.

An Ada compiler with its host computer
system and its target computer system.

The part of the certification body which
provides policy and guidance for the Ada
certification Office systenmn.

The part of the certification body which

carries out the procedures required to
establish the compliance of an Ada
implementation.

The part of the certification body that
provides technical guidance for operations
of the Ada certification system.

The ability of the implementation to pass an
ACVC version.

B

Computer System

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable Test

ISO

LRM

Operating Systenm

Target Computer
System

A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
prograns; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, process, or
service of all requirements specified.

An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF

~services (of any kind) to be performed.

A formal statement from a customer assuring
that conformity is realized or attainable on
the Ada implementation for which validation
status is realized.

A computer system where Ada source programs
are transformed into executable form.

A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

International Organization for
Standardization.

The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form '"<section>.<subsection>:
<paragraph>."

Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

A computer system where the executable form
of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada

Compiler implementation.
Validated Ada An Ada implementation that has been
Imnplementation ~validated successfully either by AVF testing

or by registration [Pro92].

Validation The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C Cc32203A C34006D C35507K
C35507L C35507N C355070 C35507P Cc355081 C35508J0
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B0O2A C55B06A
A74006A C74308A B83022B B83022H - B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C24021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CCl223A BC1226A CCl1226B BC3009B BD1B02B BD1BO6A
AD1BO8A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CDh4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE21071 CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests)
C35706L..Y (14 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)

C35708L..Y (14 tests)
C45241L..Y (14 tests)
C45421L. .Y (14 tests)
C45524L..Z (15 tests)
C45641L..Y (14 tests)

C35802L..2 (15 tests)
C45321L..Y (14 tests)
C45521L..2Z (15 tests)
C45621L..2 (15 tests)
C46012L..Z2 (15 tests)

The following 20 tests check for thé predefined type LONG_INTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411cC C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W c86006C CD7101F

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG FLOAT, or SHORT_FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAX MANTISSA is less than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length
clauses that specify values for ‘SMALL that are not powers of two
or ten; this implementation does not support such values for
/SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINE_OVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION’s base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2AS53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE’SMALL; this implementation
does not support decimal ‘SMALLs. (See section 2.3.)

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length

2-2

clauses to specify non-default sizes for access types; this

implementation does not support such sizes.

and AD8011A use machine
provides no package.

BDS8001A, BDSOO3A, BD80O4A..B (2 tests),
code insertions; this implementation
MACHINE CODE.

The 18 tests listed in the following table check that USE_ERROR is
raised if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method
CE2102E CREATE OUT_FILE SEQUENTIAL IO
CE2102F CREATE INOUT_FILE DIRECT IO
CE2102J CREATE OUT_FILE DIRECT_ IO
CE2102N OPEN IN_FILE SEQUENTIAL_ IO
CE21020 RESET IN FILE- SEQUENTIAL IO
CE2102P OPEN OUT_FILE SEQUENTIAL IO
CE2102Q RESET OUT_FILE SEQUENTIAL IO
CE2102R OPEN INOUT_FILE DIRECT_IO
CE2102S RESET INOUT_FILE DIRECT_IO
CE2102T OPEN IN FILE DIRECT_IO
CE2102U RESET IN_FILE DIRECT IO
CE2102V OPEN OUT_FILE DIRECT_IO
CE2102W RESET OUT_FILE DIRECT_ IO
CE3102F RESET Any Mode TEXT_IO
CE3102G DELETE = = ===—=—=-- TEXT IO
CE31021 CREATE OUT_FILE TEXT_IO
CE3102J OPEN IN_FILE TEXT IO
CE3102K OPEN OUT_FILE TEXT IO

The 3 tests listed in the following table check the given file
operations for the given combination of mode and access method;
this implementation does not support these operations.

Test File Operatidn Mode File Access Method
CE2105A CREATE IN FILE SEQUENTIAL IO
CE2105B CREATE IN FILE DIRECT IO
CE3109A CREATE IN_FILE TEXT_IO

CE2203A checks that WRITE raises USE_ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

EE2401D, and EE2401G use instantiations of DIRECT_IO with
unconstrained array and record types; this implementation raises
USE_ERROR on the attempt to create a file of such types.

2-3

CE2401H uses instantiations of DIRECT IO with unconstrained array
and record types; this implementation raises USE_ERROR on the
attempt to create a file of such types.

CE2403A checks that WRITE raises USE_ERROR if the capacity of an
external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3304A checks that SET LINE LENGTH and SET_PAGE_LENGTH raise
USE_ERROR if they specify an inappropriate value for the external
file; there are no inappropriate values for this 1mp1ementatlon.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT’LAST; for this implementation, the value
of COUNT/LAST is greater than 150000 making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 19 tests.
The following tests were split into two or more tests because this

implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B23004A B23007A B23009A B25002A B26005A
B28003A B32202A B32202B B32202C B37004A
B61012A B95069A B95069B BA1101B BC2001D

BC3009A BC3009C

BA2001E was graded passed by Evaluation Modification as directed by
the AVO. The test expects that duplicate names of subunits with a
common ancestor will be detected as compilation errors; this
implementation detects the errors at link time, and the AVO ruled
that this behavior is acceptable.

CD2A53A was graded inapplicable by Evaluation Modification as
directed by the AVO. The test contains a specification of a
power-of-10 value as ‘SMALL for a fixed-point type. The AVO ruled
that, under ACVC 1.11, support of decimal ‘SMALLs may be omitted.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Mr. Michael Rowland
8008 Westpark Drive
Mclean, VA 22102 (U.S.A.)

For sales information about this Ada implementation, contact:

Mr. Thomas Breves
8008 Westpark Drive
Mclean, VA 22102 (U.S.A.)

Testing of this Ada implementation was conducted at the customer’s
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation’s maximum precision (item e; see section 2.2), and-
those that depend on the support of a file system—--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3782
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 284

3-1

qd)
e)

f)
g9)

3.3 TEST E

A magnetic

1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the

host/target

After the t
set. of test

The tests were compiled, linked, and executed on the host/target

computer sy

Testing was performed using command scripts provided by the

customer an

a complete listing of the processing options for this

1mplementat
options inv
were:

CHECKS => ALL Generate all execution checks.

GENERICS => STUBS Do not inline generics.

TASKING => YES Allow tasking.

MEMORY => 500 Amount of internal buffers shared by
compile virtual memory.

STACK => 20480 Boundary size determining whether an
dynamic object is allocated on the
stack or in the map.

INLINE => PRAGMA 1Inlining of subprograms by pragma
INLINE.

REDUCTION => NONE No optimization of check or loops.

EXPRESSIONS => NONE No lowlevel optimization.

Test output, compiler and linker 1listings, and Jjob logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

Non-Processed I/0 Tests 0
Non-Processed Floating-Point
Precision Tests 0

Total Number of Inapplicable Tests 284 (c+d+e)
Total Number of Tests for ACVC 1.11 4170 (a+b+f)
XECUTION

tape containing the customized test suite (see section

computer.
est files were loaded onto the host computer the full
s was processed by the Ada implementation.

stem, as appropriate.

d reviewed by the validation team. See Appendix B for

ion. It also indicates the default options. The
oked explicitly for validation testing durlng this test

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line 1length, which is the value for
SMAX_IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAX IN LEN <255> =-- Value of V

$BIG_ID1 (1..V-1 => ‘A’, V => 717)

$BIG_ID2 (1..V-1 => ’A’, V => 127)

$BIG_ID3 (1..V/2 => 'A’) & '3’ & (1..V-1-V/2 => ’A’)
$BIG_ID4 (1..V/2 => ‘A’) & "4’ & (1..V=-1=-V/2 => 'A’)
$BIG_INT_LIT (1..V-3 => 70') & %"298"

$BIG_REAL LIT (1..V-5 => 70’) & "690.0"

$BIG_STRING1 A (l..V/2'=> raTy & Twns
$BIG_STRING2 rens g (1..V=1-V/2 => A7) & 17 & Twny
$BLANKS (1..V=20 => 7 1)

SMAX LEN_INT_BASED_LITERAL
"2T" & (1..V-5 => ‘0’) & "11:"

$MAX_ LEN REAL BASED LITERAL
"16%" & (1..V=7 => ‘0’) & "F.E:"

$SMAX STRING_LITERAL '""/ & (1..V-2 => 'A’) & /nw/

1.0E308
SHIGH_PRIORITY 7
SILLEGAL EXTERNAL FILE NAME1 \NODIRECTORY\FILENAME
SILLEGAL EXTERNAL FILE NAME2 *FLIE*
S$INAPPROPRIATE LINE_LENGTH -1

SINAPPROPRIATE _PAGE_LENGTH -1

$INCLUDE_PRAGMA1 | PRAGMA INCLUDE ("A28006D1.TST")
$INCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006D1.TST")
$INTEGER FIRST -2147483648
$INTEGER_LAST 2147483647
$INTEGER_LAST PLUS_1 2147483648
$INTERFACE LANGUAGE WIN32
$LESS_THAN_DURATION -75_000.0
$LESS_THAN DURATION_ BASE_ FIRST
-131_073.0
$LINE_TERMINATOR ASCII.CR & ASCII.LF
$LOW_PRIORITY 1
$MACHINE_CODE_STATEMENT NULL;
$MACHINE_CODE_TYPE ~ NO_SUCH_TYPE
$MANTISSA_ DOC 31
$MAX DIGITS 15
$MAX_INT 2147433647
$MAX_INT PLUS_1 2 147 483 648
SMIN_INT -2147483648
$NAME SHORT SHORT_INTEGER
$NAME_LIST ' I180X86,180386,MC680X0, S370, TRANS

PUTER,VAX,RS_6000,MIPS, SPARC

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

COMPILE (SOURCE => source name | INSTANTIATION,

LIBRARY => library name,

OPTIONS =>
(ANNOTATE => character string,
ERRORS => positive integer,
LEVEL => PARSE | SEMANTIC | CODE | UPDATE,
CHECKS => ALL | STACK | NONE,
GENERICS => STUBS | INLINE,

TASKING => YES | NO,

MEMORY => number_of kbytes),
DISPLAY =)

(OUTPUT => SCREEN | NONE | AUTOMATIC |

file name,

WARNING => YES | NO,

TEXT => YES | NO,

SHOW => BANNER | RECAP | ALL | NONE,

DETAIL => YES | NO,
ASSEMBLY => CODE | MAP | ALL | NONE),
ALLOCATION =>

(STACK => positive_integer),
IMPROVE =)
(CALLS => SUPPRESS | PRAGMA | AUTOMATIC,

REDUCTION => NONE | PARTIAL | EXTENSIVE,
EXPRESSIONS => NONE | PARTIAL | EXTENSIVE,

KEEP =)
(COPY => YES | NO,
DEBUG => YES | NO,
TREE => YES | NO
EDIT => NONE | AUTOMATIC | file name,
oTI => YES | NO));

APPENDIX C

APPENDIX F OF. THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORT SHORT_INTEGER is range -128 .. 127;
type SHORT INTEGER is range -32768 .. 32767;
type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range
-2#1. 111 1111 1111 1111 1111 1111#E+127 ..
2#1. 111 1111 1111 1111 1111 1111#E+127

type LONG_FLOAT is digits 15 range
=2#1.1111 1111 1111 1111 1111 12111 1111 1111 1111 1111 1111 1111 1111#E+1023

2#1.1111_1111 1111_1111_ 1111 1111 1111 1111 1111 1111 11131 1111 1111#E+1023

type DURATION is delta 2#0.000_000_000 000 0l# range
-131072.0 ..131072.0;

end STANDARD;

APPENDIX F OF THE Ada STANDARD

dependent characteristics of input-output packages.

Section 9 (Characteristics of Numeric Types) Defines the ranges and
attributes of numeric types in this implementation.

Section 10 (Other Implementation-Dependent Characteristics) Describes

implementation-dependent characteristics not covered in the
other chapters (such as that of the heap, tasks, and main

subprograms).
Section 11 (Limitations) Describes compiler- and hardware-related
limitations of this implementation.
Document conventions

The following list describes the typographical notations used in this
document.

Italics This font is used to designate:
File names; for example, MAIN.CUI
Prompts generated by a program; for example:
Library Manager .NEW (LIBRARY => "\GAMES");
(Library Manager is the prompt.)

Full document titles; for example, Application
Developer’s Guide.

Generic command parameters in syntax diagrams (where
the user must supply an actual value); for example,

DEFAULT. command
ERASE (FAMILY => family name);

Bold This font is used within text to designate:

Commands that must be keyed in by the user; for
example:

Use the command -COMPILE (BiNGO.ADA); to ...
Typewriter This font is used for file listings.
The following list shows examples of actual notations used in this manual
and explains how the format of the example is used to convey extra
information about it.

KEEP The underscore here indicates that KEEP is a default option.

c-3

APPENDIX F OF THE Ada STANDARD

parameter passing by the Alsys Windows NT Ada Compiler and the corresponding
mechanisms of the chosen external language.

1.3 INTERFACE NAME

Pragma INTERFACE NAME associates the name of the interfaced subprogram with
the external name of the interfaced subprogram. If pragma INTERFACE_NAME
is not used, then the two names are assumed to be identical. This pragma
takes the form:

pragma INTERFACE NAME (subprogram name, string literal);
where,

subprogram name is the name used within the Ada program to refer to the
. interfaced subprogram. L

string literal is the name by which the interfaced subprogram is
referred to at link time.

The pragma INTERFACE NAME is used to identify routines in other languages
that are not named with legal Ada identifiers. Ada identifiers can only
contain letters, digits, or underscores, whereas the Windows NT Linker LINK32
allows external names to contain other characters, for example, the dollar
sign ($) or commercial at sign (@). These characters can be specified in
the string literal argqument of the pragma INTERFACE NAME.

The pragma INTERFACE NAME is allowed at the same places of an Ada program
as the pragma INTERFACE. (Location restrictions can be found in section
13.9 of the RM.) However, the pragma INTERFACE NAME must always occur
after the pragma INTERFACE declaration for the Interfaced subprogram.

The string literal of the pragma INTERFACE NAME is passed through
unchanged, including case sensitivity, to the COFF object file. There is
no limit to the length of the name.

If INTERFACE NAME is not used, the default link name for the subprogram is
its Ada name converted to all upper case characters.

The user must be aware however, that some tools from other vendors do not
fully support the standard object file format and may restrict the length
or names of symbols. For example, most Windows NT debuggers only work with
alphanumeric identifier names. .

The Runtime Executive contains several external identifiers. All such
identifiers begin with either the string "ADA " or the string "ADAS ".
Accordingly, names prefixed by "ADA " or "ADAS " should be avoided by the
user.

Example

APPENDIX F OF THE Ada STANDARD

2.2 P'RECORD_DESCRIPTOR, P’ARRAY DESCRIPTOR

These attributes are used to control the representation of implicit
components of a record. (See Section 4.8 for more details.)

2.3 E'EXCEPTION_CODE

For a prefix E that denotes an exception name, this attribute yields a
value that represents the internal code of the exception. The value of
this attribute is of the type INTEGER.

2.4 Other Attributes

'OFFSET, 'RECORD_SIZE, ‘VARIANT INDEX, 'ARRAY DESCRIPTOR, and
*RECORD DESCRIPTOR are descibed in detail in Section 4.

Section 3
Specification of the package SYSTEM

The implementation does not allow the recompilation of package SYSTEM.

3.1 Specification of the package SYSTEM

—$33333LLILEITETLLLITLILLLLLLLTLLLLLLLTTLTTLLLLLLIILLLLLTLLTLLLLNLNNNNS
— This unpublished work is protected both as a proprietary work and under

— the Universal Copyright Convention and the US Copyright Act of 1976. Its
— distribution and access are limited only to authorized persons. Copyright
— (C) Alsys. Created 1990, initially licenced 1990. All rights reserved.
— Unauthorized use (including use to prepare other works), disclosure,

— reproduction or distribution may violate national criminal law.
—FEEEIETEELFTLEIITELTILLTLILLLLTLTLLTLLLLLTLILEL2LTLLLLLILLLLHLLLTLLULS

— Check that all CPUs are covered.
— Check that all operating systems are covered
.package SYSTEM is

type NAME is (I80X86,
180386,
MC680XO0,
$370,
TRANSPUTER,
VAX, -
RS_6000,
MIPS,

APPENDIX F OF THE Ada STANDARD

Example:
*0014:00F0"

For the other targets the syntax is:

"00000000" where 00000000 is an 8 digit or less hexadecimal mumber.
For the 80386, this mumber represents an offset either in
the data segment or in the code segment.

For the MC680X0, 370 and Transputer, the number represents
a virtual address (physical address for bare machines).
Example:
*00000008"

The exception CONSTRAINT ERROR is raised if the string has not the
— proper syntax.

subtype ADDRESS STRING is STRING(1..8);

function IMAGE (LEFT : in ADDRESS) return ADDRESS_STRING;

— Converts an address to a string. The syntax of the returned string is
~— described in the VALUE function.

— This function is used by ERROR IO to output values of type ADDRESS.

— Do not attempt to output an ADDRESS from within this subprogram.

type OFFSET is range -2%*31 ., 2##3] -1;

— This type is used to measure a number of storage units (bytes). The type
— is logically unsigned: all operations on offsets have wrap-around

— semantics.

— On non-segmented machines, the function and exception are meaningless.

— The exception CONSTRAINT ERROR can be raised by "+" and "-".

function "+" (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;
function "+" (LEFT : in OFFSET; RIGHT : in ADDRESS) return ADDRESS;
function "-" (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;

These routines provide support to perform address computations. The
meaning of the "+" and "-" operators is architecture dependent. For
example on a segmented machine the OFFSET parameter is added to, or
subtracted from the offset part of the address, the segment remaining
untouched. '

APPENDIX F OF THE Ada STANDARD

— This type is used to designate the size of an object in storage units.

procedure MOVE (TO : in ADDRESS;
FROM : in ADDRESS;
LENGTH : in OBJECT LENGTH);

TO. The source and destination may overlap.

Copies LENGTH storage units starting at the address FROM to the address

private

pragma INLINE ("+", “-*);

type ADDRESS is access STRING;
NULL _ADDRESS : constant ADDRESS := null;

end SYSTEM;

Section 4
Support for Representation Clauses

This section explains how objects are represented and allocated by the
Alsys Windows NT Ada compiler and how it is possible to control this using
representation clauses. Applicable restrictions on representation clauses
are also described.

The representation of an object is closely connected with its type. For
this reason this section addresses successively the representation of
enumeration, integer, floating point, fixed point, access, task, array and
record types. For each class of type the representaticn of the
corresponding objects is described.

Except in the case of array and record types, the description for each
class of type is independent of the others. To understand the
representation of array and record types it is necessary to understand
first the representation of their components.

Apart from implementation defined pragmas, Ada provides three means to
control the size of objects:

a (predefined) pragma PACK, applicable to array types
a record representation clause
a size specification
For each.class of types the effect of a size specification is described.

Interactions among size specifications, packing and record representation
clauses is described under the discussion of array and record types.

c-11

APPENDIX F OF THE Ada STANDARD

Size of an emumeration subtype

when no size specification is applied to an enumeration type or first named
subtype, the objects of that type or first named subtype are represented as
signed machine integers. The machine provides 8, 16 and 32 bit integers,
and the compiler selects automatically the smallest signed machine integer
which can hold each of the internal codes of the emumeration type (or
subtype). The size of the enumeration type and of any of its subtypes is
thus 8, 16 or 32 bits.

when a size specification is applied to an enumeration type, this »
enumeration type and each of its subtypes has the size specified by the
length clause. The same rule applies to a first named subtype. The size
specification must of course specify a value greater than or equal to the
minimum size of the type or subtype to which it applies:

type EXTENDED is
(— The usual ASCII character set.
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

~
'xl' ly" lz" l{l' 'I" '}" ’ " Dm"

— Extended characters
C_CEDILLA_CAP, U_UM[AUT, E__ACUTE, S

for EXTENDED'SIZE use 8;
— The size of type EXTENDED will be one byte. Its objects will be
— represented as unsigned 8 bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as
enumeration values are coded using integers, the specified length cannot be
greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a
pragma PACK, an cbject of an enumeration subtype has the same size as its
subtype.

4.2 Integer Types

There are three predefined integer types in the Alsys implementation for
180386 machines:

type SHORT SHORT INTEGER is range —2**07 .. 2%*07-1;
type SHORT INTEGER is range =-2**15 .. 2**15-1;
type INTEGER is range -2*%*31 ., 2%*31-1;

APPENDIX F OF THE Ada STANDARD

— J is derived from SHORT INTEGER, its size is 16 bits.

type N is new J range 80 .. 100;

— N is indirectly derived from SHORT INTEGER, its size is
— 16 bits.

When a size specification is applied to an integer type, this integer type
and each of its subtypes has the size specified by the length clause. The
same rule applies to a first named subtype. The size specification must of
course specify a value greater than or equal to the minimum size of the
type or subtype to which it applies:

type S is range 80 .. 100;

for S’'SIZE use 32; _

— § is derived from SHORT SHORT INTEGER, but its size is
— 32 bits because of the size specification.

type J is range 0 .. 255;

for J'SIZE use 8;

— J is derived from SHORT INTEGER, but its size is 8 bits
— because of the size specification.

type N is new‘J range 80 .. 100;

— N is indirectly derived from SHORT INTEGER, but its

— size is 8 bits because N inherits the size specification

— of J.
Size of the objects of an integer subtype
Provided its size is not constrained by a record component clause or a
pragma PACK, an object of an integer subtype has the same size as its
subtype.
4.3 Floating Point Types

There are two predefined floating point types in the Alsys implementation
for 180x86 machines:

type FLOAT is
digits 6 range -(2.0 - 2.0%%(=23))#%2,0%*127 .. (2.0 = 2.0%*(-
23))*2.0%*127; : _
type LONG FLOAT is
digits 15 range -(2.0 - 2.0%%(-52))%2.0%*1023 .. (2.0 — 2.0%*(-
52))*2,.0%*1023;
4.3.1 Floating Point Type Representation

A floating point type declared by a declaration of the form:

c-15

APPENDIX F OF THE Ada STANDARD

for FIXED'SMALL use S;

type LONG FIXED is delta D range (-2.0**31-1)*S .. 2.0**31*S;
for LONG FIXED'SMALL use S; '

where D is any real value and S any power of two less than or equal to D.
A fixed point type declared by a declaration of the form:

type T is delta D range L .. R;
possibly with a small specification:

for T'SMALL use S;

is implicitly derived from a predefined fixed point type. The compiler
automatically selects the predefined fixed point type whose small and delta
are the same as the small and delta of T and whose range is the shortest
that includes the values L to R inclusive.

In the program generated by the compiler, a safe value V of a fixed point
subtype F is represented as the integer:

V / F’BASE’'SMALL

4.4.2 Fixed Point Type and Object Size
Minimum size of a fixed point subtype

The minimum possible size of a fixed point subtype is the minimum number of
binary digits that is necessary for representing the values of the range of
the subtype using the small of the base type.

For a static subtype, if it has a null range its minimm size is 1.
Otherwise, s and S being the bounds of the subtype, if i and I are the
integer representations of m and M, the smallest and the greatest model
numbers of the base type such that s < m and M < §, then the minimum size L
is determined as follows. For i >= 0, L is the smallest positive integer
such that I <= 2L-1. For i < 0, L is the smallest positive integer
such that -2L-1 <= i and I <= 2L-1-1.

type F is delta 2.0 range 0.0 .. 500.0;
~— The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
— The minimm size of § is 7 bits.

subtype D is S range X .. Y;
— Assuming that X and Y are not static, the minimm size of D is 7 bits
— (the same as the minimum size of its type mark S).

APPENDIX F OF THE Ada STANDARD

Access Types and Objects of Access Types

The only size that can be specified for an access type using a size
specification is its usual size (32 bits).

An object of an access subtype has the same size as its subtype, thus an
object of an access subtype is always 32 bits long.

Collection Size

As described in RM 13.2, a specification of collection size can be provided
in order to reserve storage space for the collection of an access type.

When no STORAGE SIZE specification applies to an access type, no storage
space is reserved for its collection, and the value of the attribute
STORAGE SIZE is then 0.

The maximum size is limited by the amount of memory available.

4.6 Task Types
Storage for a task activation

As described in RM 13.2, a length clause can be used to specify the storage
space (that is, the stack size) for the activation of each of the tasks of
a given type. Alsys also allows the task stack size, for all tasks, to be
established using a Binder option. If a length clause is given for a task
type, the value indicated at bind time is ignored for this task type, and
the length clause is obeyed. When no length clause is used to specify the
storage space to be reserved for a task activation, the storage space
indicated at bind time is used for this activation.

A length clause may not be applied to a derived task type. The same storage
space is reserved for the activation of a task of a derived type as for the
activation of a task of the parent type. :

The minimum size of a task subtype is 32 bits.

A size specification has no effect on a task type. The only size that can
be specified using such a length clause is its usual size (32 bits).

An object of a task subtype has the same size as its subtype. Thus an
object of a task subtype is always 32 bits long.

4.7 Array Types

Each array is allocated in a contiguous area of storage units. All the
components have the same size. A gap may exist between two consecutive
components (and after the last one). All the gaps have the same size.

c-19

APPENDIX F OF THE Ada STANDARD

of its subtype:

type R is
record
K : SHORT_INTEGER;
B : BOOLEAN;
end record;
for R use
record
K at 0 range 0 .. 31;
B at 4 range 0 .. 0;
end record;
— Record type R is byte aligned. Its size is 33 bits.

type A is array (1 .. 10) of R;
— A gap of 7 bits is inserted after each component in order to respect
— the alignment of type R. The size of an array of type A will be 400 bits.

Array of type A: each subcomponent K has an even offset.

If a size specification applies to the subtype of the components or if the
array is packed, no gaps are inserted:

type R is
record
K : SHORT_INTEGER;
B : BOOLEAN;
end record;

type A is array (1 .. 10) of R;

pragma PACK(A);

— There is no gap in an array of type A because A is packed.
— The size of an object of type A will be 330 bits.

NR is new R;
for NR’'SIZE use 24;

type B is array (1 .. 10) of NR;

— There is no gap in an array of type B because

— NR has a size specification.

— The size of an object of type B will be 240 bits.

4.7.2 Array Subtype and Object Size
Size of an array subtype

The size of an array subtype is obtained by mltiplying the number of its

- components by the sum of the size of the components and the size of the
gaps (if any). If the subtype is unconstrained, the maximum number of
components is considered.

c-21

APPENDIX F OF THE Ada STANDARD

A record representation clause need not specify the position and the size
for every component. If no component clause applies to a component of a
record, its size is the size of its subtype.

4.8.2 Indirect Components

If the offset of a component cannot be computed at compile time, this
offset is stored in the record objects at run time and used to access the
component. Such a component is said to be indirect while other components
are said to be direct.

1f a record component is a record or an arfay, the size of its subtype may
be evaluated at run time and may even depend on the discriminants of the
record. We will call these components dynamic components:

type DEVICE is (SCREEN, PRINTER) ;
type COLOR is (GREEN, RED, BLUE);
type SERIES is array (POSITIVE range <>) of INTEGER;

type GRAPH (L : NATURAL) is
record
X : SERIES(1l .. L); — The size of X depends on L
Y : SERIES(1l .. L); — The size of Y depends on L
end record;

Q : POSITIVE; ' .

type PICTURE (N : NATURAL; D : DEVICE) is
record
F : GRAPH(N); — The size of F depends on N
S : GRAPH(Q); — The size of S depends on Q
case D is
when SCREEN =)>
C : COLOR;
when PRINTER =) -
mll;
end case;
end record;

Any component placed after a dynamic component has an offset which cannot
be evaluated at compile time and is thus indirect. In order to minimize the
number of indirect components, the compiler groups the dynamic components
together and places them at the end of the record:

The record type PICTURE: F and S are placed at the end of the record
Note that Ada does not allow representation clauses for record components

with non-static bounds [RM 13.4.7]), so the compiler’s grouping of dynamic
components does not conflict with the use of representation clauses.

Cc-23

APPENDIX F OF THE Ada STANDARD

(note that the storage effectively allocated for the record object may be
more than this).

The value of a RECORD SIZE component may denote a number of bits or a
nunber of storage units. In general it denotes a mmber of storage units,
but if any component clause specifies that a component of the record type
has an offset or a size which cannot be expressed using storage units, then
the value designates a number of bits.

The implicit component RECORD SIZE must be large enough to store the
maximm size of any value of the record type. The compiler evaluates an
upper bound MS of this size and then considers the implicit component as
having an anonymous integer type whose range is 0 .. MS. '

If R is the name of the record type, this implicit component can be denoted
in a component clause by the implementation generated name R'RECORD SIZE.
This allows user control over the position of the implicit component in the
record.

VARIANT INDEX

This implicit component is created by the compiler when the record type has
a variant part. It indicates the set of components that are present in a
record value. It is used when a discriminant check is to be done.

Component lists in variant parts that themselves do not contain a variant
part are numbered. These numbers are the possible values of the implicit
component VARIANT INDEX.

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is
record
SPEED : INTEGER;
case KIND is
when ATRCRAFT | CAR =>
WHEELS : INTEGER;
case KIND is
when AIRCRAFT => —1
WINGSPAN : INTEGER;:
when others =) — 2
null;
end case;
when BOAT => — 3
STEAM : BOOLEAN;
when ROCKET =) — 4
STAGES : INTEGER;
end case:;
end record;

The value of the variant index indicates the set of components that are
present in a record value.

C-25

APPENDIX F OF THE Ada STANDARD

effect. The only size that can be specified using such a length clause is
its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of a record is as expected by the application.

Size of an object of a record subtype
An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its
subtype if this size is less than or equal to 8 kb. If the size of the
subtype is greater than this, the object has the size necessary to store
its current value; storage space is allocated and released as the
discriminants of the record change.

Section 5
Conventions for Implementation-Generated Names

The Alsys Windows NT Ada Compiler may add fields to record objects and have
descriptors in memory for record or array objects. These fields are
accessible to the user through implementation-generated attributes (See
Section 2.3).

The following predefined packages are reserved to Alsys and cannot be
recompiled in Version 5.5:

system

calendar

internal types
system_environment
interrupt_manager
unix_types

unsigned
machine_operations_386
get file number
alsys_codegen_support
alsys rts_extended ascii
alsys_traces

alsys target_integers
alsys rt types

alsys time types
alsys machine_task types
alsys_stack_extension
alsys tcb package
alsys_assert

alsys task lists
alsys_resource
alsys_synchronization
alsys ada runtime
alsys error_io

alsys machine

APPENDIX F OF THE Ada STANDARD

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current
version of the compiler.

6.3 Address Clauses for Interrupt Entries

Interrupt entries are not supported.

Section 7
Unchecked Conversions

Unchecked t.;onversions are allowed between any types provided the
instantiation of UNCHECKED CONVERSION is legal Ada. It is the programmer’s
responsibility to determine if the desired effect is achieved.

If the target type has a smaller size than the source type then the target
is made of the least significant bits of the source.

Section 8
Input-Output Packages

In this part of the Appendix the implementation-specific aspects of the
input-output system are described.

8.1 Introduction

In Ada, input-output operations (IO) are considered to be performed on
objects of a certain file type rather than being performed directly on
external files. An external file is anything external to the program that
can produce a value to be read or receive a value to be written. Values
transferred for a given file must be all of one type.

Generally, in Ada documentation, the term file refers to an object of a
certain file type, whereas a physical manifestation is known as an external
file. An external file is characterized by :

Its name, which is a string defining a legal path name under the current
version of the operating system.

Its form, which gives implementation-dependent information on file
characteristics. '

Both the name and the form appear explicitly as parameters of the Ada
CREATE and OPEN procedures. Though a file is an object of a certain file

Cc-30

APPENDIX F OF THE Ada STANDARD

COUNT 0 .. 2147483647 — 2%%3]1 -1

POSITIVE COUNT 1 .. 2147483647 — 2%#%3]1 -1
For the package TEXT IO, the range of values for the type FIELD is as
follows:

FIELD 0 .. 255 — 2%%§ -]

9.2 Floating Point Type Attributes

FLOAT LONG_FLOAT

DIGITS 6 15
MANTISSA 21 51
EMAX 84 204
EPSILON 9.53674E-07 8.88178E-16
LARGE 1.93428E+25 2.57110E+61
SAFE_EMAX 125 1021
SAFE_SMALL 1.17549e-38 2.22507E-308
SAFE_LARGE 4.25353E+37 2.24712E+307
FIRST -3.40282E+38 ~1.79769E+308
LAST 3.40282E+38 1.79769E+308
MACHINE RADIX 2 2
MACHINE EMAX 128 1024
MACHINE EMIN -125 -1021
MACHINE ROUNDS true true
MACHINE OVERFLOWS : false false
SIZE 32 64

9.3 Attributes of Type DURATION
DURATION'DELTA 2.0 ** (-14)
DURATION' SMALL 2.0 ** (-14)

C-32

APPENDIX F OF THE Ada STANDARD
memory (hard disk swap space).

10.3 Characteristics of Taslis

The default task stack size is 4K bytes (96K bytes for the environment
task), but by using the Binder option STACK.TASK the size for all task
stacks in a program may be set to a size from 1K bytes to 32767 bytes.

Preemption of Ada tasks are performed by Windows NT since they are Windows
NT threads. PRIORITY values are in the range 1..86. A task with undefined
priority (no pragma PRIORITY) will take the default priority given by
Windows NT.

The accepter of a rendezvous executes the accept body code in its own
stack. Rendezvous with an empty accept body (for synchronization) does not
cause a context switch.

The main program waits for completion of all tasks dependent upon library
packages before terminating.

Abnofmal completion of an aborted task takes place immediately, except when
the abnormal task is the caller of an entry that is engaged in a
rendezvous, or if it is in the process of activating some tasks. Any such
task becomes abnormally completed as soon as the state in question is
exited.
The message

Deadlock in Ada program
is printed to STANDARD ERROR when the Runtime Executive detects that no
further progress is possible for any task in the program. The execution of
the program is then abandoned.
10.4 Definition of a Main Subprogram ‘
A library unit can be used as a main subprogram if and only if it is a
procedure that is not generic and that has no formal parameters.
10.5 Ordering of Compilation Units

The Alsys Windows NT Ada Compiler imposes no additional ordering constraints on
compilations beyond those required by the language.

Section 11
Limitations

11.1 Compiler Limitations

